Some identities for the generalized Laguerre polynomials
نویسندگان
چکیده
منابع مشابه
Specializations of Generalized Laguerre Polynomials
Three specializations of a set of orthogonal polynomials with “8 different q’s” are given. The polynomials are identified as q-analogues of Laguerre polynomials, and the combinatorial interpretation of the moments give infinitely many new Mahonian statistics on permutations.
متن کاملSome Identities for Chandrasekhar Polynomials
Basic techniques of linear algebra are used to derive some identities involving the Chandrasekhar polynomials that play a vital role in the spherical-harmonics (A) solution to basic radiative-transfer problems. @ 1997 Elsevier Science Ltd. All rights reserved
متن کاملOn the Genus of Generalized Laguerre Polynomials
belong to one of the three family of orthogonal polynomials, the other two being Jacobi and Legendre. In addition to their important roles in mathematical analysis, these polynomials also feature prominently in algebra and number theory. Schur ([7], [8]) pioneered the study of Galois properties of specializations of these orthogonal polynomials, and Feit [1] used them to solve the inverse Galoi...
متن کاملSome symmetric identities for the generalized Bernoulli, Euler and Genocchi polynomials associated with Hermite polynomials
In 2008, Liu and Wang established various symmetric identities for Bernoulli, Euler and Genocchi polynomials. In this paper, we extend these identities in a unified and generalized form to families of Hermite-Bernoulli, Euler and Genocchi polynomials. The procedure followed is that of generating functions. Some relevant connections of the general theory developed here with the results obtained ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonlinear Sciences and Applications
سال: 2016
ISSN: 2008-1901
DOI: 10.22436/jnsa.009.05.124